Physics and Control of Cavitation

نویسنده

  • Jean-Pierre FRANC
چکیده

The objective of the present chapter is to provide the basic concepts and tools required to understand the inception and development of cavitation in liquid flows. The influence of various parameters as the boundary layer and nuclei content is discussed. A special attention is given to thermal effects which may significantly influence the development of cavitation in thermosensitive fluids as cryogenic liquids. The main types of cavitation (partial attached cavities, travelling bubble cavitation, vortex cavitation and shear cavitation) are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Sonochemiluminescence in a Phantom in the Presence of Protoporphyrin IX Conjugated to Nanoparticles

Introduction When a liquid is irradiated with high-intensity and low-frequency ultrasound, acoustic cavitation occurs and there are some methods to determine and quantify this phenomenon. The existing methods for performing these experiments include sonochemiluminescence (SCL) and chemical dosimetric methods. The particles in a liquid decrease the ultrasonic intensity threshold needed for cavit...

متن کامل

Evaluating the Effects of Dual Frequency Sonication Parameters on Acoustic Cavitation by Chemical Dosimeter Using Iodide

Background and Aims: Production of acoustic cavitation by sonication has been recently recommended as a targeted treatment. The experimental results from studies indicate that the activity of cavitation generated by bi- or multi-frequency ultrasound irradiation is higher than that caused by single frequency irradiation. In this study, effects dual (1 MHz and 40 kHz) and single frequency soni...

متن کامل

Treatment of Murine Tumor Models of Breast Adenocarcinoma by Continuous Dual-Frequency Ultrasound

Introduction: Acoustic transient cavitation is the primary mechanism of sonochemical reaction and has potential use for tumor treatment. In this study, the in vivo anti-tumor effect of simultaneous dual-frequency ultrasound at low-level intensity (ISATA < 6 W/cm2) was investigated in a spontaneous murine model of breast adenocarcinoma in Balb/c mice. Materials and Methods: Forty tumor bearing m...

متن کامل

An overview of therapeutic applications of ultrasound based on synergetic effects with gold nanoparticles and laser excitation

Acoustic cavitation which occurs at high intensities of ultrasound waves can be fatal for tumor cells. The existence of dissolved gases and also the presence of nanoparticles (NPs) in a liquid, irradiated by ultrasound, decrease the acoustic cavitation onset threshold and the resulting bubbles collapse. On the other hand, due to unique capabilities and optical properties of gold nanoparticles (...

متن کامل

Synergetic Effects of the Combination of Gold Nanoparticles and Ultrasound Wave on HeLa Cells

Introduction: One of the combination therapies for the treatment of cancer is ultrasound with other agents, which has received considerable attention in recent years. Ultrasound causes cavitation phenomenon that can produce some effects, such as; Reactive Oxygen Species (ROS), which results in damage to cancer cells. When a particle is in liquid, the cavitation threshold decrea...

متن کامل

Comparison the treatment effects between simultaneous dual frequency and single frequency irradiation of ultrasound in a murine model of breast adenocarcinoma

Introduction: Transient cavitations induced by low frequency irradiation of ultrasound can be used to treat tumors. Previous studies in in-vitro experiments have shown that induced cavitation by dual or multiple frequencies of ultrasound is greater than induced cavitation by single frequency irradiation. In this study, we compared and evaluated the treatment effects of dual frequency irradiatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008